Aflatoxin Biosynthetic Pathway Enzymes
نویسندگان
چکیده
Five strains ofAspergillusfJavus lacking the ability to produce aflatoxins were examined in greenhouse tests for the ability to prevent a toxigenic strain from contaminating developing cottonseed with aflatoxins. All atoxigenic strains reduced contamination when inoculated into developing bolls 24 h prior to the toxigenic strain. However, only one strain, AF36, was highly effective when inoculated simultaneously with the toxigenic strain. All five strains were able to inhibit aflatoxin production by the toxigenic strain in liquid fermentation. Thus, in vitro activity did not predict the ability of an atoxigenic strain to prevent contamination of developing bolls. Therefore, strain selection for competitive exclusion to prevent aflatoxin contamination should include evaluation of efficacy in developing crops prior to field release. Atoxigenic strains were also characterized by the ability to convert several aflatoxin precursors into aflatoxin Bl. Four atoxigenic strains failed to convert any of the aflatoxin biosynthetic precursors to aflatoxins. However, the strain (AF36) most effective in preventing aflatoxin contamination in developing bolls converted all tested precursors into aflatoxin Bl, indicating that this strain made enzymes in the aflatoxin biosynthetic pathway.
منابع مشابه
Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?
Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases whic...
متن کاملCurrent Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarize...
متن کاملCharacterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin.
The genes encoding the aflatoxin biosynthetic pathway enzymes have been localized as a cluster to a 75-kb DNA fragment. The enzymatic functions of the products of most of the genes in the cluster are known, but there are a few genes that have not yet been characterized. We report here the characterization of one of these genes, a gene designated aflJ. This gene resides in the cluster adjacent t...
متن کاملActivation of Aflatoxin Biosynthesis Alleviates Total ROS in Aspergillus parasiticus
An aspect of mycotoxin biosynthesis that remains unclear is its relationship with the cellular management of reactive oxygen species (ROS). Here we conduct a comparative study of the total ROS production in the wild-type strain (SU-1) of the plant pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in which the aflatoxin biosynthesis pathway is blocked by dis...
متن کاملInhibition of aflatoxin biosynthesis by phenolic compounds.
The phenolic compounds acetosyringone, syringaldehyde and sinapinic acid inhibited the biosynthesis of aflatoxin B1 (AFB1) by A. flavus. Acetosyringone was the most active among the three compounds, inhibiting aflatoxin level by 82% at 2 m moll-1. The synthesis and accumulation of norsolorinic acid, an aflatoxin biosynthetic intermediate, was also inhibited. These results suggest that at least ...
متن کامل